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Outline

• Two Presentations in one

• Multiple Endpoint Issues (MB)
• Description

• Endpoints

• Measuring Disease

• Composite Endpoint as a solution (MB)

• Statistical Methodology (RM)
• IUT

• LRT

• Size, power, bias, sample size
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Multiple Endpoints

• There is concern about an increasing trend towards 

requiring that confirmatory clinical trials achieve 

statistical significance on all of p primary endpoints, 

where p>1.

• Obviously, as p increases, it becomes more difficult 

to achieve success in any given disease setting 

• PhARMA / FDA Workshop on Clinical, Statistical and 

Regulatory Challenges of Multiple Endpoints, 

October 20-21, 2004, Bethesda, MD 
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Some Examples

• Migraine

▪ Pain-free at 2 hours

▪ Nausea at 2 hours

▪ Photosensitivity at 2 hours

▪ Phonosensitivity at 2 hours

• Alzheimers

▪ ADAS-Cog

▪ CIBIC+
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What this implies

• All endpoints are equally important

and

• Interchangeable

➢ e.g. migraine

▪ Study with pain p<.0001, nausea p=.06 has the 

same importance as study with pain p=.06, nausea 

p<.0001.
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Examples with Multiple Endpoints

1. Migraine (4)

2. Alzheimers (2)

3. Acute Pain (3)

4. Lower Back Pain (3)

5. Sleep Disorders (3 or 6)

6. RA (4)

7. OA for symptom modifying (2)

8. Asthma, COPD (2)

9. ED (3)

10. Skin Aging (2)
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Examples with Multiple Endpoints (2)

11. Menopausal Symptoms (3)

12. Fracture Healing (2)

13. Acne (4)

14. Male Pattern Baldness (2)

15. Glaucoma (9)

16. Ophthalmology – dry eye (2)

17. Hepatitis B (up to 3)

18. Vaginal Atrophy (3)
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Examples with Multiple Endpoints (3)

19. Organ Transplantation (2)

20. Primary Biliary Cirrhosis (PBC) (4)

21. BPH (2)

22. Multiple Sclerosis (2)

23. Epilepsy (3)

24. Vaccines (up to 23)

25. Operable Breast Cancer (with positive 

auxiliary lymph nodes) (2)

26. Fibromyalgia (2-3)
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Multiple Endpoints

• Do we have a good understanding of the 

statistical properties of the “obvious” testing 

procedure -- where each endpoint is tested 

separately?

• Technical problems arise in this testing 

problem because the null and alternative 

hypotheses correspond to “non-standard” 

partitions of the parameter space.
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Level of Evidence

• Is it sufficient to argue that multiple 

endpoints are bad – because there are 

difficulties in analysis?

• Should ask: What is the evidence that will 

allow a conclusion of effect in a disease?

• Need to consider evidence on “multiple” 

levels – not just multiple endpoints
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“Primary” and “Secondary”

• Primary Endpoints

▪ These endpoints define the disease in the sense 

that an experimental drug that does not show 

superiority over placebo for all of these endpoints 

is not a viable treatment for the disease under 

study

• Secondary Endpoints

▪ These endpoints, although not considered 

primary, are considered important to prescribing 

physicians in helping to identify the ideal 

treatment for each of their patients



12

Objectives vs. Endpoints

• Objective –

• The intention of the study (general)

• The conclusion (hypothesis) you wish to reach 

(specific)

• May be primary, secondary, tertiary

• Endpoints –

• The set of measurements used to address 

objectives

• May have one-one mapping, hence primary, 

secondary, tertiary

• May meet multiple objectives
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Objectives vs. Endpoints

• Is multiplicity because of number of 
endpoints? Or because of multiple 
endpoints addressing a single objective?

• Type I / II error rates are functions of 
conclusions - Easier to associate with an 
objective.

• Best to evaluate operating characteristics of 
decision process – more complicated 
processes are more difficult to evaluate
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Measuring the Disease 

• Is there a single key measure of the disease?
• Assess primary objective by requiring a 

“significant” effect on single endpoint with 
supporting evidence on other (“secondary”) 
endpoints

• Are there multiple ways to measure, but 
each is important individually?
• A drug that has a dramatic effect on only one of 

the important endpoints should be made 
available to patients with that symptom.  (Drugs 
could be targeted for different symptoms.)
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Measuring the Disease 

• Are multiple measures required to 

characterize disease?

• Assess primary objective by requiring a 

“significant” effect on two or more endpoints

• Use a composite (is this a single measure?)

• Corollary: A patient with one symptom but not 

the others does not have the disease

What is the right question?
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Example

▪ Insomnia is a disease that has a number of 

symptoms associated with it, but not all 

patients have all of them

▪ Look for benefit in onset of sleep

▪ Look for benefit in longer, continuous sleep

▪ Effect on either would be important
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Composite Endpoints:  Solution?

• Composite endpoint – a single measure of 

effect from a combined set of different 

variables

• Common in time to event analyses

• CV: First event of MI, Stroke, CABG, 

Hospitalization, Death

• Diabetic Nephropathy: Decreased Renal 

Function, End Stage Renal Disease, Death

• Oncology: Progression or Death
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Composite Endpoints:  Solution?

• Rheumatoid Arthritis – ACR20 Response

• 20% improvement in tender joint count

• 20% improvement in swollen joint count

• Plus 20% improvement in 3 out of 5 of:

• Patient pain assessment

• Patient global assessment

• Physician global assessment

• Patient self-assessed disability

• Acute phase reactant
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Composite Endpoints:  Components

• How to interpret components?
• Significant in one and weak in others 

• None significant, but all in right direction 

• Should you analyze components individually?

• Question may be: 
• Does the drug do something? vs. What does the 

drug do?

• Public health needs vs. labeling and informing the 
prescriber

• Number of components may impact 
interpretation
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Composite Endpoints:  Components

• How to weight different components?

• Death in time to event

• Use life years as weighting for event (up-

weight    death)

• Death (all cause) is not sensitive

• Death is a competing risk but may be 

important or not (do not expect impact)

• ACR20 has built in weighting – is that reflected in 

component analysis?



21

Composite Endpoints:  Components

• Is the composite a measure of the disease 

(individual components do not fully measure 

the disease) or is it for convenience of 

analysis?

• Sparse events

• Competing risk

• Multiplicity

• Are the events surrogates for other events or 

surrogates for something else?

• CV events are an outcome of underlying disease

• Diabetic Nephropathy increasing severity of 

disease



22

Clinical Need vs. Statistical Method

• Align the statistical approach with the 

medical/clinical requirements for a “win”

• Statistical underpinnings but a clinical problem

• Clarity of definitions and consensus regarding the 

clinical trial structure for a “win” is a strong 

motivation for why we are here

- Robert T. O’Neill, Director, Office of Biostatistics CDER, 

FDA, PhARMA /FDA Workshop Oct 20-21, 2004
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Summary 

• Issues in the use of Multiple Endpoints are 

multi-faceted - The Discussion needs to focus 

on the following questions:

• What set of measures are necessary to 

characterize a disease and the impact of 

intervention on that disease?

• How should the measures be used to establish 

evidence of effect?  Single primary? Multiple 

primary? Composite?

• What is the best statistical methodology for 

showing effect?
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Multiple Primary Endpoints: A Model

• Joint work with Morris L. Eaton (University of 
Minnesota)

• Suppose we have      subjects on drug and      
subjects on placebo

• Suppose there are p primary endpoints, assumed to 
have a p-variate normal distribution. 

• Thus we have:

• Let 

• To show efficacy on all p endpoints, we need to be 
able to conclude that                                       This will 
then be the alternative hypothesis.
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Model (cont.)

• Let                                be the sample mean 

vectors and sample covariance matrices.

• Put 

• Finally, let 
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Model (cont)

• Then 

with

• The alternative hypothesis of interest is then 

• A natural null hypothesis is then that
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p =2: Null & Alternative   Parameter Spaces

1

2

0, 0

Alternative

parameter

space

Null

parameter

space

This is not the whole story! It is not the complete 

parameter space, which also involves the covariance 

matrix 
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The Testing Problem

• To summarize, we observe a random vector 

Y and a random matrix S, where

with both   and  unknown.

• The null and alternative hypotheses are
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The Intersection Union Test (IUT)

• The “standard” procedure, where each 

coordinate of the parameter vector   is 

tested separately at the same level a  is an 
intersection-union test (IUT).

• Let        be the set of all pxp positive definite 

matrices.

• The full parameter space is then


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The IUT (cont)

• Let

• Then the null and alternative hypotheses are
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IUT (cont)

• A one-sided test of level a  for testing

has the rejection region             where

and       is the upper a  point of the tn distribution.

• The test that rejects        if and only if 

is an IUT. (The rejection region is the intersection of all 

the individual rejection regions.)
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IUT (cont)

• From now on, we assume

• Let

• The IUT with size a  rejects           if 

• This is sometimes called the “min test”.   
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The Likelihood Ratio Test (LRT)

Result 1: The LRT is identical to the IUT. 

Steps involved in showing this:

• The likelihood function is proportional to

• For fixed , the matrix 

maximizes L.  
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The LRT (cont)

• Now,              is proportional to

• So, for testing                            the LRT rejects 

for small enough values of 
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The LRT (cont)

• The denominator here is equal to 1, so the 

LRT rejects       for large enough values of

• But it can be shown that

• Thus rejecting        for large D is equivalent to 

rejecting for large T, and this is the IUT.
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What now?

• So the IUT of size a  and the LRT of size a  are 

identical.

• The test itself does not involve the 

correlations between the endpoints (but its 

properties do).

• What’s known, or can be proved, about the 

test?
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Properties of the Test

1. Its size is a  that is, the maximum Type I error 
probability is a. (Under quite general conditions this 
is true for IUTs, so no multiplicity adjustment is 
needed with IUTs.)

2. It may be conservative. The intended level may be 
quite a bit smaller than a. For example, if all 

the probability of a Type I error is         

which is less than a.
• But the correlations also play an important role that is 

often overlooked. For example, when p=2 and the 
correlation is 1, the Type I error probability is a. 

,  and  0 pi I ,pa
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Properties of the Test (2)

• More on size: The size a is achieved in the 

null parameter space when  is fixed, one 

coordinate of  is zero, and the remaining 

coordinates of   are 

• Suppose p = 2. The Type I error probability 

reaches the intended significance level 

when either (1)                                or 

(2)                                 If either (1) or (2) hold, 

the treatment has no effect on one 

endpoint and an infinitely large effect on 

the other.

.

 ,  and  0 21 

 .0  and  21 
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Properties of the Test (3)

3. The test is biased, which means that there are 

parameter values in the alternative space for 

which the probability of rejecting the null 

hypothesis (the power) is smaller than a.  (Recall 

that when all                             the probability of 

rejecting the null hypothesis is       This implies, since 

the power function is continuous in the parameters, 

that there are points close to 0 in the alternative 

space for which the power is less than a. This may 

not be a serious problem – many tests in common 

use are biased.)

,  and  0 pi I
.pa
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Properties of the Test (4)

What can we say about statistical issues such 

as:  

• The p-value of the test?

• The power function of the test?

• Sample sizes needed to achieve a specified 

power?
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The p-value

• The test which rejects if               where 

is both the IUT and LRT of size a.

• Suppose the value           is observed.

• The p-value is then
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p-value (cont)

• The p-value is just the upper tail probability of 

a t distribution, and so is easily calculated.

Result 2:

where       is a random variable with a      

distribution. 
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Power

• For any           the power function is

• Thus the power appears to depend on

parameters.
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Power (cont)

• But, because the test is invariant under 

positive scale changes of each coordinate,

where R is the correlation matrix and

• Thus the power depends “only” on 
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Power (cont)

• Marginally, each        has a non-central t 

distribution with n degrees of freedom and 

non-centrality parameter 

Result 3: If the covariance matrix  is diagonal, 
then
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Power (cont)

• In the multiple endpoint setting, it is probably 

reasonable to assume that the elements of  

are non-negative – i.e., the correlations 

between endpoints are non-negative.

• In this case it is possible to obtain a lower 

bound for the power function.

Result 4: When all correlations are non-

negative,
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Sample size

• The calculation of this lower bound 

for the power function requires specification 

of the non-centrality parameters
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Sample size (cont)

• Suppose

• Then all the         are equal to

• The lower bound result is then 

where      has a non-central t distribution with 

2m-2 degrees of freedom and non-centrality 
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Sample size (cont)

• Setting e.g.

and solving for m  yields a sample size 

necessary to ensure that the power is at least 

0.8

• This would, of course, have to be done 

numerically – but seems straightforward.
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Final Comment about Power and Bias

• Take            The equation                       implies  

where       has a non-central t distribution 
with 2m-2 degrees of freedom and non-
centrality b.

• For example, if m = 26, a = .05, and p = 4, 
then (approx) b = 1.9. Thus in the alternative 
parameter space with            and all             
the power of the test is .05. In the (unlikely) 
event that this parameter configuration were 
deemed clinically meaningful, this would be 
rather unsettling…..
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Summary

• In testing multiple endpoints, the usual test 

consists of testing each endpoint separately 

using one-sided t tests at level a, and to 
conclude  that the drug is efficacious only if 

each endpoint is statistically significant; that 

is,  only if

• This is equivalent to concluding efficacy only 

if 
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Summary (2)

• This test is both an IUT and the LRT of size a; 

that is, the maximum probability of a Type I 

error is a.

• The test may be conservative, depending on 

the parameter configuration in the null 

space.

• The test is biased; that is, there are values of 

the parameters in the alternative space for 

which the probability of rejecting the null 

hypothesis is less than a.
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Summary (3)

• A simple expression for the p-value is 
available:

• A simple lower bound for the power function 
is available in terms of non-central t tail 
probabilities:

• This lower bound can be used to help 
determine sample sizes.
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Final Thoughts

• The problem of testing multiple endpoints 

becomes even more complicated when the 

endpoints are:

• Discrete; e.g. binary (as in the case of migraine)

• Some are discrete and some are continuous

• How should such situations be modeled, so 

that the power function (which answers 

questions about level, size, bias, power) can 

be calculated?


